2. Single-parameter models

2020-24837 Kyungmin Lee 2020-30213 Jinwon Park

Contents

- 2.1 Estimating a probability from binomial data
- 2.2 Posterior as compromise between data and prior information
- 2.3 Summarizing posterior inference
- 2.4 Informative prior distributions
- 2.5 Estimating a normal mean with known variance
- 2.6 Other standard single-parameter models
- 2.7 Example: informative prior distribution for cancer rates
- 2.8 Noninformative prior distributions
- 2.9 Weakly informative prior distributions

Binomial sampling model - Likelihood, Posterior

$$p(y|\theta) = Bin(y|n,\theta) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

$$p(\theta|y) \propto \theta^{y} (1-\theta)^{n-y}$$

$$(2.1)$$

$$p(\theta|y) = \frac{p(\theta,y)}{p(y)} = \frac{p(\theta)p(y|\theta)}{p(y)} \propto p(\theta)p(y|\theta)$$
(Bayes' rule)

Beta & Gamma distribution

$$Beta(\alpha,\beta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}, \qquad \theta \in [0,1]$$

$$Gamma(\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha-1)} e^{-\beta\theta}, \qquad \theta > 0$$

Binomial sampling model - Likelihood, Posterior

$$p(y|\theta) = Bin(y|n,\theta) = \binom{n}{y} \theta^{y} (1-\theta)^{n-y}$$

$$p(\theta|y) \propto \theta^{y} (1-\theta)^{n-y}$$

$$\theta |y \sim Beta(y+1,n-y+1)$$
(2.3)

Example. Estimating the probability of a female birth

- *n* : population
- y : # of female
- θ : proportion of female births

Assume. $\theta \sim U(0,1)$

Figure 2.1 Unnormalized posterior density for binomial parameter θ , based on uniform prior distribution and y successes out of n trials. Curves displayed for several values of n and y.

Prediction

$$p(\tilde{y}|y) = \int p(\tilde{y},\theta|y)d\theta$$
$$= \int p(\tilde{y}|\theta,y)p(\theta|y)d\theta$$
$$= \int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

(1.4)

Prediction

$$p(\tilde{y}|y) = \int p(\tilde{y}, \theta|y) d\theta = \int p(\tilde{y}|\theta) p(\theta|y) d\theta$$

$$Pr(\tilde{y} = 1|y) = \int_0^1 Pr(\tilde{y} = 1|\theta, y)p(\theta|y)d\theta$$
$$= \int_0^1 \theta p(\theta|y)d\theta = E(\theta|y) = \frac{\alpha}{\alpha + \beta} = \frac{y+1}{n+2}$$

(1.4)

2.2 Posterior as compromise between data and prior information

Relationship between prior & posterior mean & variance

 $E(\theta) = E(E(\theta|y))$

(2.7)

(2.8)

$$var(\theta) = E(var(\theta|y)) + var(E(\theta|y))$$

 $var(\theta) > E(var(\theta|y))$: potential for reducing 'uncertainty'

2.3 Summarizing posterior inference

- Flexibility : posterior inferences can be summarized, even after complicated transformations

- Summaries of locations : mean, median, mode
- The mode often plays an important role even rather than mean or median because of its convenience
- Posterior quantiles : interest in interval summary with regard to posterior uncertainty

2.3 Summarizing posterior inference

- The highest posterior density region
 - : conveys more information about separate centrals

(a) central posterior interval, (b) highest posterior density region.

$$p(\theta|y) = \frac{p(\theta, y)}{p(y)} = \frac{p(\theta)p(y|\theta)}{p(y)} \propto p(\theta)p(y|\theta)$$

The uniform prior distribution

$$\theta \sim U(0,1) \Rightarrow p(\theta) = 1, \quad p(\theta|y) \propto p(y|\theta)$$

Informative prior cases

$$\theta \sim \blacksquare \quad \Rightarrow \quad p(\theta) = \blacksquare, \qquad p(\theta|y) \propto \blacksquare \cdot p(y|\theta)$$

Conjugacy : Binomial sampling model with hyperparameter α , β of Beta distribution

Likelihood

 $p(y|\theta) \propto \theta^{y}(1-\theta)^{n-y}$

Prior informative

$$p(\theta) \propto \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

Posterior

$$p(\theta|y) \propto \theta^{y} (1-\theta)^{n-y} \theta^{\alpha-1} (1-\theta)^{\beta-1}$$

= $\theta^{y+\alpha-1} (1-\theta)^{n-y+\beta-1}$
= $Beta(\theta|\alpha+y,\beta+n-y) \land \land$

Definition of conjugacy

$p(\theta|y) \in \mathcal{P}$ for all $p(\cdot | \theta) \in \mathcal{F}$ and $p(\cdot) \in \mathcal{P}$

 \mathcal{F} : class of $p(\theta|y)$, \mathcal{P} : class of all distribution

- Interested in natural conjugate prior families

Exponential families

$$p(y_i|\theta) = f(y_i)g(\theta)e^{\phi(\theta)^T u(y_i)}$$

$$p(y|\theta) \propto g(\theta)^n e^{\phi(\theta)^T t(y)}$$
, where $t(y) = \sum_{i=1}^n u(y_i)$

n

- t(y) : sufficient statistic for θ
- The only classes that have natural conjugate prior

Normal sample distribution (known σ^2)

$$p(y|\theta) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(y-\theta)^2}$$

$$\theta \sim N(\mu_0, {\tau_0}^2)$$
 with hyperparameters $\mu_0, {\tau_0}^2$
 $p(\theta) \propto \exp(-\frac{1}{2{\tau_0}^2}(\theta - \mu_0)^2)$

 $\theta | y \sim N(\mu_1, \tau_1^2)$

$$p(\theta|y) \propto \exp(-\frac{1}{2{\tau_1}^2}(\theta-\mu_1)^2)$$

Compromise between the prior mean and the observed value

$$\mu_{1} = \mu_{0} + (y - \mu_{0}) \frac{\tau_{0}^{2}}{\sigma^{2} + \tau_{0}^{2}}$$
$$\mu_{1} = y - (y - \mu_{0}) \frac{\sigma^{2}}{\sigma^{2} + \tau_{0}^{2}}$$

Posterior predictive distribution

$$p(\tilde{y}|y) = \int p(\tilde{y}|\theta)p(\theta|y)d\theta$$

$$\propto \int \exp(-\frac{1}{2\sigma^2}(\tilde{y}-\theta)^2)\exp(-\frac{1}{2\tau_1^2}(\theta-\mu_1)^2)d\theta$$

Posterior predictive distribution

$$E(\tilde{y}|y) = E(E(\tilde{y}|\theta, y)|y = E(\theta|y) = \mu_1$$

$$var(\tilde{y}|y) = E(var(\tilde{y}|\theta, y)|y) + var(E(\tilde{y}|\theta, y)|y)$$

= $E(\sigma^2|y) + var(\theta|y)$
= $\sigma^2 + \tau_1^2$

Normal model with multiple observable

$$p(\theta|y_1 \dots, y_n) = p(\theta|\bar{y}) = N(\theta|\mu_n, \tau_n^2)$$

$$\mu_{n} = \frac{\frac{1}{\tau_{0}^{2}}\mu_{0} + \frac{n}{\sigma^{2}}\bar{y}}{\frac{1}{\tau_{0}^{2}} + \frac{n}{\sigma^{2}}} \text{ and } \frac{1}{\tau_{1}^{2}} = \frac{1}{\tau_{0}^{2}} + \frac{n}{\sigma^{2}} \text{ (precision)}$$

 $p(\theta|y) \approx N(\theta|\bar{y},\sigma^2/n)$

Normal distribution with known mean but unknown variance

$$p(y|\sigma^2) \propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \theta)^2\right)$$

Normal distribution with known mean but unknown variance

Likelihood
$$p(y|\sigma^2) \propto \sigma^{-n} \exp\left(-\frac{1}{2\sigma^2}\sum_{i=1}^n (y_i - \theta)^2\right)$$

= $(\sigma^2)^{-n/2} \exp\left(-\frac{n}{2\sigma^2}v\right).$

$$v = \frac{1}{n} \sum_{i=1}^{n} (y_i - \theta)^2.$$
 $v : sufficient static$

Normal distribution with known mean but unknown variance

Conjugate prior (Inverse-Gamma)

$$p(\sigma^2) \propto (\sigma^2)^{-(\alpha+1)} e^{-\beta/\sigma^2}$$

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

$$p(\sigma^2|y) \propto p(\sigma^2)p(y|\sigma^2)$$

$$\propto \left(\frac{\sigma_0^2}{\sigma^2}\right)^{\nu_0/2+1} \exp\left(-\frac{\nu_0\sigma_0^2}{2\sigma^2}\right) \cdot (\sigma^2)^{-n/2} \exp\left(-\frac{n}{2}\frac{v}{\sigma^2}\right)$$

$$\propto (\sigma^2)^{-((n+\nu_0)/2+1)} \exp\left(-\frac{1}{2\sigma^2}(\nu_0\sigma_0^2+nv)\right).$$

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

$$\sigma^2 | y \sim \text{Inv-}\chi^2 \left(\nu_0 + n, \frac{\nu_0 \sigma_0^2 + nv}{\nu_0 + n} \right)$$

Poisson model

Likelihood (y ~ Poisson(θ))

$$p(y|\theta) = \frac{\theta^y e^{-\theta}}{y!}, \text{ for } y = 0, 1, 2, \dots$$

Poisson model

Likelihood : exponential family form

$$p(y|\theta) = \prod_{i=1}^{n} \frac{1}{y_i!} \theta^{y_i} e^{-\theta}$$

$$\propto \theta^{t(y)} e^{-n\theta},$$

$$\propto e^{-n\theta} e^{t(y)\log\theta}$$
natural parameter

$$\phi(\theta) = \log\theta$$

θ

Poisson model

Prior predictive dist. – the negative binomial density

$$p(y) = \frac{\text{Poisson}(y|\theta)\text{Gamma}(\theta|\alpha,\beta)}{\text{Gamma}(\theta|\alpha+y,1+\beta)} \qquad y \sim \text{Neg-bin}(\alpha,\beta)$$
$$= \frac{\Gamma(\alpha+y)\beta^{\alpha}}{\Gamma(\alpha)y!(1+\beta)^{\alpha+y}},$$
$$= \left(\frac{\alpha+y-1}{y}\right) \left(\frac{\beta}{\beta+1}\right)^{\alpha} \left(\frac{1}{\beta+1}\right)^{y},$$

Poisson model

Conjugate prior distribution $p(\theta) \propto (e^{-\theta})^\eta e^{\nu \log \theta}$

Conjugate posterior distribution

$$\theta | y \sim \text{Gamma}(\alpha + n\overline{y}, \beta + n)$$

Poisson model parameterized in terms of rate and exposure

Extension of Poisson model for data points y_1, \dots, y_n

$$y_i \sim \text{Poisson}(x_i \theta)$$
 x_i : exposure θ : rate

Likelihood $p(y|\theta) \propto \theta \left(\sum_{i=1}^{n} y_i\right)_e - \left(\sum_{i=1}^{n} x_i\right)_{\theta}$

Poisson model parameterized in terms of rate and exposure

Prior $\theta \sim \text{Gamma}(\alpha, \beta),$

Posterior

$$\theta | y \sim \text{Gamma}\left(\alpha + \sum_{i=1}^{n} y_i, \ \beta + \sum_{i=1}^{n} x_i\right)$$

Exponential model – time scale, 'waiting times'

Rate $\theta = 1/E(y|\theta)$

A sampling distribution (not used as a likelihood)

$$p(y|\theta) = \theta \exp(-y\theta)$$
, for $y > 0$

Prior and Posterior

 $Gamma(\theta | \alpha, \beta) \qquad Gamma(\theta | \alpha + 1, \beta + y)$

Exponential model – time scale, 'waiting times'

Rate $\theta = 1/E(y|\theta)$

A sampling distribution (not used as a likelihood)

$$p(y|\theta) = \theta \exp(-y\theta)$$
, for $y > 0$

Prior and Posterior

 $Gamma(\theta | \alpha, \beta) \qquad Gamma(\theta | \alpha + 1, \beta + y)$

Exponential model – n independent exp. observations

A sampling distribution of $y = (y_1, ..., y_n)$

$$p(y|\theta) = \theta^n \exp(-n\overline{y}\theta), \text{ for } \overline{y} \ge 0$$

Figure below shows the counties in US with the highest and lowest kidney caner death rates

 \rightarrow Noticeably many cases are in the middle of the country

Lowest kidney cancer death rates

- There might be some reason of this
- Perhaps sample size matters
- Example:

Suppose a county A with population 1,000

Since kidney cancer is a rare disease, A will have a high probability of 0 death case

However, A still have a chance to have 1 case in 10 years, which will lead to put in the top 10% with ratio of 1 per 10,000 per year

- Cancer death rates model

 $p(y_j|\theta_j) \sim \operatorname{Poi}(10n_j\theta_j)$

- Notations

 y_j : # of kidney cancer deaths in county j

 n_j : population of the county

 θ_j : death rate per person per year

- For Bayesian inference,

Need prior distribution for unknown rate θ_i

Use Gamma distribution which is conjugate to the Poisson

Consider an independent prior

How about hyperparameters?

- Constructing a prior distribution $p(y_j) = \int p(y_j | \theta_j) P(\theta_j) d\theta_j$ Hence, $y_j \sim Negbin(\alpha, \frac{\beta}{10n_j})$ in this case $E(y_j) = 10n_j \frac{\alpha}{\beta} \longrightarrow E(\frac{y_j}{10n_j}) = \frac{\alpha}{\beta}$ $var(y_j) = 10n_j \frac{\alpha}{\beta} + (10n_j)^2 \frac{\alpha}{\beta^2} \rightarrow var(\frac{y_j}{10n_j}) = \frac{1}{10n_j \frac{\alpha}{\beta}} + \frac{\alpha}{\beta^2}$

- Posterior: Gamma distribution (conjugate to Poisson)

 $p(\theta_j|y_j) \sim Gamma(\alpha + y_j, \beta + n)$

- Hyperparameter for $p(\theta_j|y_j)$

set $\alpha = 20, \ \beta = 430,000$

- Reasonable prior distribution for death rate in the U.S. during the period

- Posterior distribution

$$p(\theta_j | y_j) \sim Gamma(20 + y_j, 430,000 + 10n_j)$$
$$E(\theta_j | y_j) = \frac{20 + y_j}{430,000 + 10n_j}$$
$$Var(\theta_j | y_j) = \frac{20 + y_j}{(430,000 + 10n_j)^2}$$

- For counties with small nj, the data are dominated by the prior.
- For counties with large nj, the data dominate the prior.

- Comparing counties of different sizes

Bayes-estimated rates are much less variable

- Desire for prior distributions to play a minimal role in the posterior distribution
- Noninformative prior shows vague information about the parameter
 - let the data speak for themselves
 - Diffuse or flat prior
 - Improper prior
 - Jeffrey's invariance principle
 - cf) weakly informative prior

- Proper and improper prior distributions

Estimating mean θ of normal model with known variance $\sigma^2 p(\theta|y) \sim N(\mu_0, \tau_0^2)$

If $\tau_0^2 \to \infty$, the prior information(=1/ τ_0^2) vanishes and $p(\theta|y) \approx N(\theta|\bar{y}, \sigma^2/n)$

If $P(\theta)$ is proportional to constant $\theta \in (-\infty, \infty)$, it is improper for this violates the assumption that probabilities sum to 1 $\int P(\theta) d\theta = \infty$, and $p(\theta|y) = N(\theta|\bar{y}, \sigma^2/n)$

- Improper prior can lead to proper posterior $\int P(\theta|y) \, d\theta \, \alpha \int P(y|\theta) P(\theta) \, d\theta < \infty$
- Posterior distribution which is obtained from improper prior must be interpreted with great care!

- Jeffrey's invariance principle considering one-to-one transformations for the parameter $\phi = h(\theta)$

By transformation of variables, $P(\theta)$ is equivalent to the following prior density on ϕ $P(\phi)p(\theta) \left| \frac{d\theta}{d\phi} \right| = P(\theta)|h'(\theta)|^{-1}$

- Jeffrey's invariance principle This leads to defining the noninformative prior density as $P(\theta) \alpha [J(\theta)]^{1/2}$

where $J(\theta)$ as the Fisher information for θ

$$J(\theta) = E\left(\left(\frac{d\log p(y|\theta)}{d\theta}\right)^2 \middle| \theta\right) = -E\left(\frac{d^2\log_P(y|\theta)}{d\theta^2} \middle| \theta\right)$$

- Jeffrey's invariance principle Jeffrey's prior is invariant to parametrization: For $\phi = h(\theta)$, $J(\phi) = -E\left(\frac{d^2 \log P(y|\phi)}{d\phi^2}\right)$ $= -E\left(\frac{d^2 \log P(y|\theta = h^{-1}(\phi))}{d\theta^2} \left|\frac{d\theta}{d\phi}\right|^2\right) = J(\theta) \left|\frac{d\theta}{d\phi}\right|^2$

Thus,
$$J(\phi)^{1/2} = J(\theta)^{1/2} \left| \frac{\mathrm{d}\theta}{\mathrm{d}\phi} \right|$$

- Difficulties with noninformative prior distributions

1. Searching for a prior distribution that is always vague seems misguided

2. For many problems, there is no clear choice for a vague prior distribution, since a density that is flat or uniform in one parameterization will not be in another

3. Further difficulties arise when averaging over a set of competing models that have improper prior distributions

2.9 Weakly informative prior distributions

- A prior distribution is proper but is set up so that the information it provides is intentionally weaker than actual prior knowledge is available
- In general any problem has some natural constraints that allow a weakly informative model
- Two principles for weakly informative priors

Start with some version of noninformative prior and then add information

Start with a informative prior and broaden it to account for uncertainty