2. Single-parameter models

2020-24837 Kyungmin Lee 2020-30213 Jinwon Park

Contents

2.1 Estimating a probability from binomial data
2.2 Posterior as compromise between data and prior information
2.3 Summarizing posterior inference
2.4 Informative prior distributions
2.5 Estimating a normal mean with known variance
2.6 Other standard single-parameter models
2.7 Example: informative prior distribution for cancer rates
2.8 Noninformative prior distributions
2.9 Weakly informative prior distributions

2.1 Estimating a probability from binomial data

Binomial sampling model - Likelihood, Posterior

$$
\begin{gather*}
p(y \mid \theta)=\operatorname{Bin}(y \mid n, \theta)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y} \\
p(\theta \mid y) \propto \theta^{y}(1-\theta)^{n-y} \tag{2.1}\\
p(\theta \mid y)=\frac{p(\theta, y)}{p(y)}=\frac{p(\theta) p(y \mid \theta)}{p(y)} \propto p(\theta) p(y \mid \theta) \tag{2.2}
\end{gather*}
$$

(Bayes' rule)

2.1 Estimating a probability from binomial data

Beta \& Gamma distribution

$$
\begin{array}{cc}
\operatorname{Beta}(\alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \theta^{\alpha-1}(1-\theta)^{\beta-1}, & \theta \in[0,1] \\
\operatorname{Gamma}(\alpha, \beta)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha-1)} e^{-\beta \theta}, & \theta>0
\end{array}
$$

2.1 Estimating a probability from binomial data

Binomial sampling model - Likelihood, Posterior

$$
\begin{gather*}
p(y \mid \theta)=\operatorname{Bin}(y \mid n, \theta)=\binom{n}{y} \theta^{y}(1-\theta)^{n-y} \\
p(\theta \mid y) \propto \theta^{y}(1-\theta)^{n-y} \tag{2.1}\\
\theta \mid y \sim \operatorname{Beta}(y+1, n-y+1) \tag{2.2}
\end{gather*}
$$

2.1 Estimating a probability from binomial data

Example. Estimating the probability of a female birth

$$
\theta \mid y \sim \operatorname{Beta}(y+1, n-y+1)
$$

n : population
y : \# of female
θ : proportion of female births

Assume. $\theta \sim U(0,1)$

2.1 Estimating a probability from binomial data

Prediction

$$
\begin{aligned}
& p(\tilde{y} \mid y)=\int p(\tilde{y}, \theta \mid y) d \theta \\
& =\int p(\tilde{y} \mid \theta, y) p(\theta \mid y) d \theta \\
& =\int p(\tilde{y} \mid \theta) p(\theta \mid y) d \theta
\end{aligned}
$$

2.1 Estimating a probability from binomial data

Prediction

$$
\begin{align*}
& p(\tilde{y} \mid y)=\int p(\tilde{y}, \theta \mid y) d \theta=\int p(\tilde{y} \mid \theta) p(\theta \mid y) d \theta \\
& \operatorname{Pr}(\tilde{y}=1 \mid y)=\int_{0}^{1} \operatorname{Pr}(\tilde{y}=1 \mid \theta, y) p(\theta \mid y) d \theta \tag{1.4}\\
& =\int_{0}^{1} \theta p(\theta \mid y) d \theta=E(\theta \mid y)=\frac{\alpha}{\alpha+\beta}=\frac{y+1}{n+2}
\end{align*}
$$

2.2 Posterior as compromise

 between data and prior informationRelationship between prior \& posterior mean \& variance

$$
E(\theta)=E(E(\theta \mid y))
$$

$$
\begin{equation*}
\operatorname{var}(\theta)=E(\operatorname{var}(\theta \mid y))+\operatorname{var}(E(\theta \mid y)) \tag{2.7}
\end{equation*}
$$

$\operatorname{var}(\theta)>E(\operatorname{var}(\theta \mid y)):$ potential for reducing 'uncertainty'

2.3 Summarizing posterior inference

- Flexibility : posterior inferences can be summarized, even after complicated transformations
- Summaries of locations : mean, median, mode
- The mode often plays an important role even rather than mean or median because of its convenience
- Posterior quantiles : interest in interval summary with regard to posterior uncertainty

2.3 Summarizing posterior inference

- The highest posterior density region
: conveys more information about separate centrals

(a) central posterior interval, (b) highest posterior density region.

2.4 Informative prior distributions

$$
p(\theta \mid y)=\frac{p(\theta, y)}{p(y)}=\frac{p(\theta) p(y \mid \theta)}{p(y)} \propto p(\theta) p(y \mid \theta)
$$

The uniform prior distribution

$$
\theta \sim U(0,1) \quad \Rightarrow \quad p(\theta)=1, \quad p(\theta \mid y) \propto p(y \mid \theta)
$$

Informative prior cases

$$
\theta \sim \square \quad \Rightarrow \quad p(\theta)=\llbracket, \quad p(\theta \mid y) \propto \llbracket \cdot p(y \mid \theta)
$$

2.4 Informative prior distributions

Conjugacy : Binomial sampling model with hyperparameter α, β of Beta distribution

Likelihood

$$
p(y \mid \theta) \propto \theta^{y}(1-\theta)^{n-y}
$$

Prior informative

$$
p(\theta) \propto \theta^{\alpha-1}(1-\theta)^{\beta-1}
$$

Posterior

$$
\begin{aligned}
p(\theta \mid y) \propto & \theta^{y}(1-\theta)^{n-y} \theta^{\alpha-1}(1-\theta)^{\beta-1} \\
& =\theta^{y+\alpha-1}(1-\theta)^{n-y+\beta-1} \\
& =\operatorname{Beta}(\theta \mid \alpha+y, \beta+n-y)
\end{aligned}
$$

2.4 Informative prior distributions

Definition of conjugacy

$$
p(\theta \mid y) \in \mathcal{P} \text { for all } p(\cdot \mid \theta) \in \mathcal{F} \text { and } p(\cdot) \in \mathcal{P}
$$

\mathcal{F} : class of $p(\theta \mid y), \mathcal{P}$: class of all distribution

- Interested in natural conjugate prior families

2.4 Informative prior distributions

Exponential families

$$
\begin{gathered}
p\left(y_{i} \mid \theta\right)=f\left(y_{i}\right) g(\theta) e^{\phi(\theta)^{T} u\left(y_{i}\right)} \\
p(y \mid \theta) \propto g(\theta)^{n} e^{\phi(\theta)^{T} t(y)}, \quad \text { where } t(y)=\sum_{i=1}^{n} u\left(y_{i}\right)
\end{gathered}
$$

- $t(y)$: sufficient statistic for θ
- The only classes that have natural conjugate prior

2.5 Estimating a normal mean with unknown variance

Normal sample distribution (known σ^{2})

$$
p(y \mid \theta)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}(y-\theta)^{2}}
$$

$\theta \sim N\left(\mu_{0}, \tau_{0}{ }^{2}\right)$ with hyperparameters $\mu_{0}, \tau_{0}{ }^{2}$

$$
p(\theta) \propto \exp \left(-\frac{1}{2 \tau_{0}{ }^{2}}\left(\theta-\mu_{0}\right)^{2}\right)
$$

2.5 Estimating a normal mean with unknown variance

$$
\theta \mid y \sim N\left(\mu_{1}, \tau_{1}{ }^{2}\right)
$$

$$
\begin{gathered}
p(\theta \mid y) \propto \exp \left(-\frac{1}{2 \tau_{1}{ }^{2}}\left(\theta-\mu_{1}\right)^{2}\right) \\
\mu_{1}=\frac{\frac{1}{\tau_{0}{ }^{2}} \mu_{0}+\frac{1}{\sigma^{2}} y}{\frac{1}{\tau_{0}{ }^{2}}+\frac{1}{\sigma^{2}}} \text { and } \frac{1}{\tau_{1}{ }^{2}}=\frac{1}{\tau_{0}{ }^{2}}+\frac{1}{\sigma^{2}} \text { (precision) }
\end{gathered}
$$

2.5 Estimating a normal mean with unknown variance

Compromise between the prior mean and the observed value

$$
\begin{aligned}
& \mu_{1}=\mu_{0}+\left(y-\mu_{0}\right) \frac{\tau_{0}{ }^{2}}{\sigma^{2}+\tau_{0}{ }^{2}} \\
& \mu_{1}=y-\left(y-\mu_{0}\right) \frac{\sigma^{2}}{\sigma^{2}+\tau_{0}{ }^{2}}
\end{aligned}
$$

2.5 Estimating a normal mean with unknown variance

Posterior predictive distribution

$$
\begin{aligned}
& p(\tilde{y} \mid y)=\int p(\tilde{y} \mid \theta) p(\theta \mid y) d \theta \\
& \propto \int \exp \left(-\frac{1}{2 \sigma^{2}}(\tilde{y}-\theta)^{2}\right) \exp \left(-\frac{1}{2 \tau_{1}^{2}}\left(\theta-\mu_{1}\right)^{2}\right) d \theta
\end{aligned}
$$

2.5 Estimating a normal mean with unknown variance

Posterior predictive distribution

$$
\begin{aligned}
E(\tilde{y} \mid y) & =E\left(E(\tilde{y} \mid \theta, y) \mid y=E(\theta \mid y)=\mu_{1}\right. \\
\operatorname{var}(\tilde{y} \mid y) & =E(\operatorname{var}(\tilde{y} \mid \theta, y) \mid y)+\operatorname{var}(E(\tilde{y} \mid \theta, y) \mid y) \\
& =E\left(\sigma^{2} \mid y\right)+\operatorname{var}(\theta \mid y) \\
& =\sigma^{2}+\tau_{1}{ }^{2}
\end{aligned}
$$

2.5 Estimating a normal mean with unknown variance

Normal model with multiple observable

$$
\begin{gathered}
p\left(\theta \mid y_{1} \ldots, y_{n}\right)=p(\theta \mid \bar{y})=N\left(\theta \mid \mu_{n}, \tau_{n}{ }^{2}\right) \\
\mu_{n}=\frac{\frac{1}{\tau_{0}{ }^{2}} \mu_{0}+\frac{n}{\sigma^{2}} \bar{y}}{\frac{1}{\tau_{0}{ }^{2}}+\frac{n}{\sigma^{2}}} \text { and } \frac{1}{\tau_{1}{ }^{2}}=\frac{1}{\tau_{0}{ }^{2}}+\frac{n}{\sigma^{2}} \text { (precision) } \\
p(\theta \mid y) \approx N\left(\theta \mid \bar{y}, \sigma^{2} / n\right)
\end{gathered}
$$

2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

$$
p\left(y \mid \sigma^{2}\right) \propto \sigma^{-n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\theta\right)^{2}\right)
$$

2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance
Likelihood $\quad p\left(y \mid \sigma^{2}\right) \propto \sigma^{-n} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\theta\right)^{2}\right)$

$$
=\left(\sigma^{2}\right)^{-n / 2} \exp \left(-\frac{n}{2 \sigma^{2}} v\right) .
$$

$$
v=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\theta\right)^{2} . \quad v: \text { sufficient static }
$$

2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate prior (Inverse-Gamma)

$$
p\left(\sigma^{2}\right) \propto\left(\sigma^{2}\right)^{-(\alpha+1)} e^{-\beta / \sigma^{2}}
$$

2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

$$
\begin{aligned}
p\left(\sigma^{2} \mid y\right) & \propto p\left(\sigma^{2}\right) p\left(y \mid \sigma^{2}\right) \\
& \propto\left(\frac{\sigma_{0}^{2}}{\sigma^{2}}\right)^{\nu_{0} / 2+1} \exp \left(-\frac{\nu_{0} \sigma_{0}^{2}}{2 \sigma^{2}}\right) \cdot\left(\sigma^{2}\right)^{-n / 2} \exp \left(-\frac{n}{2} \frac{v}{\sigma^{2}}\right) \\
& \propto\left(\sigma^{2}\right)^{-\left(\left(n+\nu_{0}\right) / 2+1\right)} \exp \left(-\frac{1}{2 \sigma^{2}}\left(\nu_{0} \sigma_{0}^{2}+n v\right)\right) .
\end{aligned}
$$

2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

$$
\sigma^{2} \left\lvert\, y \sim \operatorname{Inv}-\chi^{2}\left(\nu_{0}+n, \frac{\nu_{0} \sigma_{0}^{2}+n v}{\nu_{0}+n}\right)\right.
$$

2.6 Other standard single-parameter models

Poisson model

Likelihood (y ~ Poisson(θ))

$$
p(y \mid \theta)=\frac{\theta^{y} e^{-\theta}}{y!}, \text { for } y=0,1,2, \ldots
$$

2.6 Other standard single-parameter models

Poisson model

Likelihood : exponential family form

$$
\begin{array}{rlr}
p(y \mid \theta) & =\prod_{i=1}^{n} \frac{1}{y_{i}!} \theta^{y_{i}} e^{-\theta} & \\
& \propto \theta^{t(y)} e^{-n \theta}, & \text { natural parameter } \\
& \propto e^{-n \theta} e^{t(y) \log \theta} & \phi(\theta)=\log \theta
\end{array}
$$

2.6 Other standard single-parameter models

Poisson model

Prior predictive dist. - the negative binomial density

$$
\begin{aligned}
p(y) & =\frac{\operatorname{Poisson}(y \mid \theta) \operatorname{Gamma}(\theta \mid \alpha, \beta)}{\operatorname{Gamma}(\theta \mid \alpha+y, 1+\beta)} \\
& =\frac{\Gamma(\alpha+y) \beta^{\alpha}}{\Gamma(\alpha) y!(1+\beta)^{\alpha+y}}, \\
& =\binom{\alpha+y-1}{y}\left(\frac{\beta}{\beta+1}\right)^{\alpha}\left(\frac{1}{\beta+1}\right)^{y},
\end{aligned}
$$

2.6 Other standard single-parameter models

Poisson model

Conjugate prior distribution

$$
p(\theta) \propto\left(e^{-\theta}\right)^{\eta} e^{\nu \log \theta}
$$

Conjugate posterior distribution

$$
\theta \mid y \sim \operatorname{Gamma}(\alpha+n \bar{y}, \beta+n)
$$

2.6 Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Extension of Poisson model for data points y_{1}, \ldots, y_{n}

$$
y_{i} \sim \operatorname{Poisson}\left(x_{i} \theta\right) \quad x_{i}: \text { exposure } \theta: \text { rate }
$$

Likelihood $\quad p(y \mid \theta) \propto \theta\left(\sum_{i=1}^{n} y_{i}\right) e^{-\left(\sum_{i=1}^{n} x_{i}\right) \theta}$

2.6 Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Prior

$$
\theta \sim \operatorname{Gamma}(\alpha, \beta)
$$

Posterior

$$
\theta \mid y \sim \operatorname{Gamma}\left(\alpha+\sum_{i=1}^{n} y_{i}, \beta+\sum_{i=1}^{n} x_{i}\right)
$$

2.6 Other standard single-parameter models

Exponential model - time scale, 'waiting times'

Rate

$$
\theta=1 / \mathrm{E}(y \mid \theta)
$$

A sampling distribution (not used as a likelihood)

$$
p(y \mid \theta)=\theta \exp (-y \theta), \text { for } y>0
$$

Prior and Posterior

$$
\operatorname{Gamma}(\theta \mid \alpha, \beta) \quad \operatorname{Gamma}(\theta \mid \alpha+1, \beta+y)
$$

2.6 Other standard single-parameter models

Exponential model - time scale, 'waiting times'

Rate

$$
\theta=1 / \mathrm{E}(y \mid \theta)
$$

A sampling distribution (not used as a likelihood)

$$
p(y \mid \theta)=\theta \exp (-y \theta), \text { for } y>0
$$

Prior and Posterior

$$
\operatorname{Gamma}(\theta \mid \alpha, \beta) \quad \operatorname{Gamma}(\theta \mid \alpha+1, \beta+y)
$$

2.6 Other standard single-parameter models

Exponential model - n independent exp. observations

A sampling distribution of $y=\left(y_{1}, \ldots, y_{n}\right)$

$$
p(y \mid \theta)=\theta^{n} \exp (-n \bar{y} \theta), \text { for } \bar{y} \geq 0
$$

2.7 Example: informative prior distribution for cancer rates

Figure below shows the counties in US with the highest and lowest kidney caner death rates
\rightarrow Noticeably many cases are in the middle of the country

Highest kidney cancer death rates

Lowest kidney cancer death rates

2.7 Example: informative prior distribution for cancer rates

- There might be some reason of this
- Perhaps sample size matters
- Example:

Suppose a county A with population 1,000
Since kidney cancer is a rare disease, A will have a high probability of 0 death case
However, A still have a chance to have 1 case in 10 years, which will lead to put in the top 10% with ratio of 1 per 10,000 per year

2.7 Example: informative prior distribution for cancer rates

- Cancer death rates model

$$
p\left(y_{j} \mid \theta_{j}\right) \sim \operatorname{Poi}\left(10 n_{j} \theta_{j}\right)
$$

- Notations
y_{j} : \# of kidney cancer deaths in county j
n_{j} : population of the county
θ_{j} : death rate per person per year
- For Bayesian inference,

Need prior distribution for unknown rate θ_{j}
Use Gamma distribution which is conjugate to the Poisson
Consider an independent prior
How about hyperparameters?
2.7 Example: informative prior distribution for cancer rates

- Constructing a prior distribution

$$
p\left(y_{j}\right)=\int p\left(y_{j} \mid \theta_{j}\right) P\left(\theta_{j}\right) \mathrm{d} \theta_{j}
$$

Hence, $y_{j} \sim \operatorname{Negbin}\left(\alpha, \frac{\beta}{10 n_{j}}\right)$ in this case
$E\left(y_{j}\right)=10 n_{j} \frac{\alpha}{\beta} \quad \rightarrow \quad E\left(\frac{y_{j}}{10 n_{j}}\right)=\frac{\alpha}{\beta}$
$\operatorname{var}\left(y_{j}\right)=10 n_{j} \frac{\alpha}{\beta}+\left(10 n_{j}\right)^{2} \frac{\alpha}{\beta^{2}} \rightarrow \operatorname{var}\left(\frac{y_{j}}{10 n_{j}}\right)=\frac{1}{10 n_{j}} \frac{\alpha}{\beta}+\frac{\alpha}{\beta^{2}}$

2.7 Example: informative prior distribution for cancer rates

- Posterior: Gamma distribution (conjugate to Poisson)

$$
p\left(\theta_{j} \mid y_{j}\right) \sim \operatorname{Gamma}\left(\alpha+y_{j}, \beta+n\right)
$$

- Hyperparameter for $p\left(\theta_{j} \mid y_{j}\right)$

$$
\text { set } \alpha=20, \beta=430,000
$$

- Reasonable prior distribution for death rate in the U.S. during the period

2.7 Example: informative prior distribution for cancer rates

- Posterior distribution

$$
\begin{aligned}
& p\left(\theta_{j} \mid y_{j}\right) \sim \operatorname{Gamma}\left(20+y_{j}, 430,000+10 n_{j}\right) \\
& \mathrm{E}\left(\theta_{j} \mid y_{j}\right)=\frac{20+y_{j}}{430,000+10 n_{j}} \\
& \operatorname{Var}\left(\theta_{j} \mid y_{j}\right)=\frac{20+y_{j}}{\left(430,000+10 n_{j}\right)^{2}}
\end{aligned}
$$

- For counties with small nj, the data are dominated by the prior.
- For counties with large nj , the data dominate the prior.

2.7 Example: informative prior distribution for cancer rates

- Comparing counties of different sizes

Bayes-estimated rates are much less variable

2.8 Noninformative prior distributions

- Desire for prior distributions to play a minimal role in the posterior distribution
- Noninformative prior shows vague information about the parameter
- let the data speak for themselves
- Diffuse or flat prior
- Improper prior
- Jeffrey's invariance principle
- cf) weakly informative prior

2.8 Noninformative prior distributions

- Proper and improper prior distributions

Estimating mean θ of normal model with known variance σ^{2}

$$
p(\theta \mid y) \sim N\left(\mu_{0}, \tau_{0}^{2}\right)
$$

If $\tau_{0}^{2} \rightarrow \infty$, the prior information $\left(=1 / \tau_{0}^{2}\right)$ vanishes and

$$
p(\theta \mid y) \approx N\left(\theta \mid \bar{y}, \sigma^{2} / n\right)
$$

If $P(\theta)$ is proportional to constant $\theta \in(-\infty, \infty)$, it is improper for this violates the assumption that probabilities sum to 1

$$
\int P(\theta) \mathrm{d} \theta=\infty, \text { and } p(\theta \mid y)=N\left(\theta \mid \bar{y}, \sigma^{2} / n\right)
$$

2.8 Noninformative prior distributions

- Improper prior can lead to proper posterior

$$
\int P(\theta \mid y) \mathrm{d} \theta \alpha \int P(y \mid \theta) P(\theta) \mathrm{d} \theta<\infty
$$

- Posterior distribution which is obtained from improper prior must be interpreted with great care!

2.8 Noninformative prior distributions

- Jeffrey's invariance principle
considering one-to-one transformations for the parameter

$$
\phi=h(\theta)
$$

By transformation of variables, $P(\theta)$ is equivalent to the following prior density on ϕ

$$
P(\phi) p(\theta)\left|\frac{d \theta}{d \emptyset}\right|=P(\theta)\left|h^{\prime}(\theta)\right|^{-1}
$$

2.8 Noninformative prior distributions

- Jeffrey's invariance principle

This leads to defining the noninformative prior density as

$$
P(\theta) \alpha[J(\theta)]^{1 / 2}
$$

where $J(\theta)$ as the Fisher information for θ

$$
J(\theta)=E\left(\left.\left(\frac{d \log p(y \mid \theta)}{d \theta}\right)^{2} \right\rvert\, \theta\right)=-E\left(\left.\frac{\mathrm{~d}^{2} \log _{P}(y \mid \theta)}{\mathrm{d} \theta^{2}} \right\rvert\, \theta\right)
$$

2.8 Noninformative prior distributions

- Jeffrey's invariance principle

Jeffrey's prior is invariant to parametrization: For $\phi=h(\theta)$,

$$
\begin{gathered}
J(\phi)=-E\left(\frac{\mathrm{~d}^{2} \log P(y \mid \phi)}{\mathrm{d} \phi^{2}}\right) \\
=-E\left(\frac{\mathrm{~d}^{2} \log P\left(y \mid \theta=h^{-1}(\phi)\right)}{\mathrm{d} \theta^{2}}\left|\frac{\mathrm{~d} \theta}{\mathrm{~d} \phi}\right|^{2}\right)=J(\theta)\left|\frac{\mathrm{d} \theta}{\mathrm{~d} \phi}\right|^{2}
\end{gathered}
$$

Thus, $J(\phi)^{1 / 2}=J(\theta)^{1 / 2}\left|\frac{\mathrm{~d} \theta}{\mathrm{~d} \phi}\right|$

2.8 Noninformative prior distributions

- Difficulties with noninformative prior distributions

1. Searching for a prior distribution that is always vague seems misguided
2. For many problems, there is no clear choice for a vague prior distribution, since a density that is flat or uniform in one parameterization will not be in another
3. Further difficulties arise when averaging over a set of competing models that have improper prior distributions

2.9 Weakly informative prior distributions

- A prior distribution is proper but is set up so that the information it provides is intentionally weaker than actual prior knowledge is available
- In general any problem has some natural constraints that allow a weakly informative model
- Two principles for weakly informative priors

Start with some version of noninformative prior and then add information
Start with a informative prior and broaden it to account for uncertainty

