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2.1 Estimating a probability from binomial data

Binomial sampling model - Likelihood, Posterior

P(y|9) — Bin(yln, 9) — <;) QJ’(]_ _ H)n—y
(2.1)
p(0|y) x 6Y(1—0)"Y

(2.2)
p0,y) p@)p(ylo)

p(»)  p®)

p(Bly) = x p(0)p(ylo)

(Bayes' rule)



2.1 Estimating a probability from binomial data

Beta & Gamma distribution

['(a+ B)

Beta(a, B) = [(a)T(B)

6~ 1(1-0)F"1, 6 €e01]

a
P g-a-1)¢-po

, >0
I'a)

Gamma(a, B) =



2.1 Estimating a probability from binomial data

Binomial sampling model - Likelihood, Posterior

p(y|8) = Bin(y|n,0) = (;) 6Y(1—6e)n Y
(2.1)
p(Oly) < 8¥(1—6)"7

(2.2)
O|ly~Beta(y+1,n—y+1)

(2.3)



2.1 Estimating a probability from binomial data

Example. Estimating the probability of a female birth
O|ly~Beta(y+1,n—y+1)

n : population s -
y . # of female /\

9 : p ro p O rt i O n Of 0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 06 0.8 1.0

female births /\m /\ o

Assume. 9 ~ U(O’l) 0 02 04 06 08 10 0 02 04 06 08 1.0

Figure 2.1 Unnormalized posterior density for binomial parameter 6, based on uniform prior dis-

tribution and y successes out of n trials. Curves displayed for several values of n and y.



2.1 Estimating a probability from binomial data

Prediction
p(Fly) = f p(7, 01y)do

. f p(716,)p(61y)d6

- j b (710)p(81y)do

(1.4)



2.1 Estimating a probability from binomial data

Prediction
p(Fly) = [ p(7,61y)d6 = f p(F10)p(81y)d6

(1.4)

1

Pry = 1ly) = j Pr(y = 116, y)p(01y)do
0

1 a y+1
= [ epolyas = E@ly) = ——
0

a+f n+?2




2.2 Posterior as compromise
between data and prior information

Relationship between prior & posterior mean & variance

E(0) = E(E(8]y))
(2.7)
var(9) = E(var(@ly)) + var(E(Hbf))

(2.8)
var(9) > E(var(8ly)) : potential for reducing ‘uncertainty’



2.3 Summarizing posterior inference

- Flexibility : posterior inferences can be summarized, even
after complicated transformations

- Summaries of locations : mean, median, mode

- The mode often plays an important role even rather than
mean or median because of its convenience

- Posterior quantiles : interest in interval summary
with regard to posterior uncertainty



2.3 Summarizing posterior inference

- The highest posterior density region
. conveys more information about separate centrals

(a) central posterior interval, (b) highest posterior density region.



2.4 Informative prior distributions

p©,y) _pr@pylo)
p(y) p(y)

p(@ly) = x p(&)p(y|0)

The uniform prior distribution
6~U01) = p@)=1  ply) « p(yl6)
Informative prior cases

O~m = p@)=m  pOly) xm- p(ylo)



2.4 Informative prior distributions

Conjugacy : Binomial sampling model
with hyperparameter «, f of Beta distribution

Likelihood

p(y|0) < 87 (1—6)"Y
Prior informative

p(0) « H471(1 — g)F 1
Posterior

p(Bly) o 67(1— )" Y6 (1~ )F
= 9y+a—1(1 _ H)n—y+ﬁ—1

= Beta(Bla+y,L+n—y) 4



2.4 Informative prior distributions

Definition of conjugacy

p(@|ly) € Pforallp(-|6) € Fandp(-) € P

F : class of p(0]y), P: class of all distribution

- Interested in natural conjugate prior families



2.4 Informative prior distributions

Exponential families

p(yil6) = f(¥)g(0)e®® 1D

p(y16) x g(O"e# @D, where ty) = ¥ u(y)
i=1
- t(y) : sufficient statistic for
- The only classes that have natural conjugate prior



2.5 Estimating a normal mean with unknown variance

Normal sample distribution (known ¢?)

1 _L( _9)2
|9 — e 202 Y
POI0) = el

6 ~ N(uy, 7o) With hyperparametelrs Lo, To?

p(6) x exp(—5— (6 — pp)?)

2
2T



2.5 Estimating a normal mean with unknown variance

Oly ~ N(ug, 71°)

1
p(Oly) o exp(—5— (6 — 11)?)
11
1 1
= TO_ZMO "‘?3’ an i—i+i( recision)
M1 1 1 1,2 192 02 p




2.5 Estimating a normal mean with unknown variance

Compromise between the prior mean and the observed value

TOZ

Uy = o +(y — to) 5

g° + 7

0
=y -0 —t) S
o) +T0




2.5 Estimating a normal mean with unknown variance

Posterior predictive distribution

p(Fly) = f p(710)p(61y)do

1
< [ exp(=53 G = 0)exp( 5 (0 — 1)*)d0

2
2T



2.5 Estimating a normal mean with unknown variance

Posterior predictive distribution
E@ly) =EEFIO )y =EW@ly) = u

var(yly) = E(var(yIH WIy) + var(EF|6,y)]y)
= E(G Iy) + var(0]y)
O' + Tl



2.5 Estimating a normal mean with unknown variance

Normal model with multiple observable

p(9|y1 »yn) — p(@‘)_/) — N(Hl.un'Tnz)

1
_Tozﬂo 023’ ; 1_1 n N
Uy = L+£ an le_roz+02 (precision)
T2 0
0

p(0ly) =~ N(0|y,0°/n)



2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

1 rt
pulo?) o~ exp 50z Do~ 0)

i=1



2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Likelihood 2 M f o e i
p(ylo?) x o eXP( = ;(yz 9))

el n
= (¢?) /zexp(—ﬁv).

v : sufficient static



2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate prior (Inverse-Gamma)

plifTE?J ~ {{TE} (x+41) —ﬁf::r‘



2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

p(c?ly) o p(a®)p(yle?)

2 L-"{]I.I'rE—FJ. Y.
o Voo .y n v
X —g exp | —= ; (6?)™ /2 exp (—7—2)
T 20 20

_ 1
X {n‘z)_':':”+“n]x'?+” exp (—F[u“ﬂrﬁ + :HJ}) .




2.6 Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)

2
Vpop + NU
o|ly ~ Inv-x? | vy + n.
Vg T+ N



2.6 Other standard single-parameter models

Poisson model

Likelthood (y ~ Poisson(0) )

Ay e—?

p(yld) = ——, fory=0,1,2,...

Y-



2.6 Other standard single-parameter models

Poisson model

Likelihood : exponential family form

T

1
plyld) = H_H.u;ﬁ—&?

;!
P i
x @t Wle—no

—nlft]ﬁﬂ:y:l log ¢

natural parameter

O(f) = log ¢



2.6 Other standard single-parameter models

Poisson model

Prior predictive dist. — the negative binomial density

Poisson(y|#)Gamma(8|«, 3)

Gamma(f|a + y, 1 + 3) 3. .
gt [ - i |
(o + y)3° 1y N eg ].]lll{{l. )})

T(a)y!' (1 + B)ety’

(a+y—1 8 \" 1 v
- Y 8+1 B+1) °

p(y)




2.6 Other standard single-parameter models

Poisson model

Conjugate prior distribution
P{H} ~ {{—_‘:_E)”ﬁ” log 6
Conjugate posterior distribution

fly ~ Gamma(a + ny. 5 + n)



2.6 Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Extension of Poisson model for data points yq, ..., v,

yi ~ Poisson(x;60) x; . exposure @ : rate

Likelihood f—"(ﬂ‘ﬁ} N H{Zz;l 'i:"”}{'-_j_{zzl:l J.!]H



2.6 Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Prior
6 ~ Gammalca, 3).

Posterior

e n
f|y ~ Gamma (-::1- + Z yi, 3+ Z .-:?f;)
i=1

i=1



2.6 Other standard single-parameter models

Exponential model — time scale, ‘'waiting times’

Rate |
= 1/E(y|0)

A sampling distribution (not used as a likelihood)

p(yl@) = Bexp(—yh). for y > 0

Prior and Posterior
Gamma(0|a, ) Gamma(Bla+ 1,8 + y)



2.6 Other standard single-parameter models

Exponential model — time scale, ‘'waiting times’

Rate |
= 1/E(y|0)

A sampling distribution (not used as a likelihood)

p(yl@) = Bexp(—yh). for y > 0

Prior and Posterior
Gamma(0|a, ) Gamma(Bla+ 1,8 + y)



2.6 Other standard single-parameter models

Exponential model — n independent exp. observations

A sampling distribution of y = (y4, ..., %)

p(y|f) = 0" exp(—nyl), fory =0



2.7 Example: informative prior distribution for cancer rates

Figure below shows the counties in US with the highest and
lowest kidney caner death rates

— Noticeably many cases are in the middle of the country

Highest kidney cancer death rates

Lowest kidney cancer death rates
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2.7 Example: informative prior distribution for cancer rates

- There might be some reason of this
- Perhaps sample size matters
- Example:
Suppose a county A with population 1,000

Since kidney cancer is a rare disease, A will have a high
probability of O death case

However, A still have a chance to have 1 case in 10 years,

which will lead to put in the top 10% with ratio of 1 per
10,000 per year



2.7 Example: informative prior distribution for cancer rates

- Cancer death rates model
p(y;16,)~ Poi(10n;6;)
- Notations
yj. # of kidney cancer deaths in county j
n;: population of the county
0;: death rate per person per year
- For Bayesian inference,
Need prior distribution for unknown rate 6;
Use Gamma distribution which is conjugate to the Poisson
Consider an independent prior
How about hyperparameters?



2.7 Example: informative prior distribution for cancer rates

- Constructing a prior distribution
p(y;) = | p(y;]6;)P(8;) de;
Hence, y; ~ Negbin(a, L) In this case
E(y;) = 10m; - (1%) =

¢
B
2
Var(yj) = 10n]~%+ (10n]-) 52 ( ) = 10n]ﬁ ;2



2.7 Example: informative prior distribution for cancer rates

Prior distribution for
underlying death rates

-

0 5 10 15 20 25
Kidney cancer death rates (per 100,000)

Number of counties
0 50 100 150 200 250

- Posterior: Gamma distribution (conjugate to Poisson)
p(@;ly;) ~ Gamma(a + y;, f + n)
- Hyperparameter for p(6;|y;)

set «a =20, f = 430,000
- Reasonable prior distribution for death rate in the U.S. during the period



2.7 Example: informative prior distribution for cancer rates

- Posterior distribution

p(0ily;) ~ Gamma(20 + y;,430,000 + 10n;)
_ 20+yj
E(0)1y;) = 430,000+107;

B 20+y;
Var(9]|y]) _ (430,000+10nj)2

- For counties with small nj, the data are dominated by the prior.
- For counties with large nj, the data dominate the prior.



2.7 Example: informative prior distribution for cancer rates

- Comparing counties of different sizes

gd gd
c8 58
Bayes-estimated rates are 5 | g™ o
. ] i .. - : S ;.
much less variable Eo | Rz o &\
o | Bl - =
00 05 10 15 20 25 2 3 4 5 6
population (millions) log10 (population)
~ I~ N~
g g
g ge
gm glo
2 2
Ev Ev
< =
[av} ]
'800 it [ '80:" ;
5 3 4 5 6 5 3 4 5 6

log10 (population) log10 (population)



2.8 Noninformative prior distributions

- Desire for prior distributions to play a minimal role in the
posterior distribution

- Noninformative prior shows vague information about the
parameter

- let the data speak for themselves
- Diffuse or flat prior

- Improper prior

- Jeffrey’'s invariance principle

- cf) weakly informative prior




2.8 Noninformative prior distributions

- Proper and improper prior distributions

Estimating mean 6 of normal model with known variance ¢*
p(0]y)~N (10,75 )
If 75 - oo, the prior information(=1/75) vanishes and
p(0ly) = N(O|y,a*/n)
If P(6) is proportional to constant 8 € (—oo, ), it is Iimproper
for this violates the assumption that probabilities sum to 1

jP(H) d0 = oo, and p(0|y) = N(8|y,c%/n)



2.8 Noninformative prior distributions

- Improper prior can lead to proper posterior
fP(HIy) do afP(yIH)P(H) dO < o

- Posterior distribution which is obtained from improper prior
must be Iinterpreted with great care!



2.8 Noninformative prior distributions

- Jeffrey's invariance principle
considering one-to-one transformations for the parameter

¢ = h(8)

By transformation of variables, P(8) is equivalent to the
following prior density on ¢

do
P(p)p(6) aol = P(8)h'(6)




2.8 Noninformative prior distributions

- Jeffrey's invariance principle
This leads to defining the noninformative prior density as

P(0)alj(6)]Y/?

where J(0) as the Fisher information for 6

) = 8((£25222)| o) (%2522 o




2.8 Noninformative prior distributions

- Jeffrey's invariance principle
Jeffrey's prior is invariant to parametrization: For ¢ = h(60),

d“log P
J(@) = —E( Oibz(qub))
d? log P(y|6=h"1(¢)) | dg |2 de |?
:_E< d6? ‘dqb‘ ) =J(6) ‘@

Thus, J(¢)"2 = J(6) "2 |



2.8 Noninformative prior distributions

- Difficulties with noninformative prior distributions
1. Searching for a prior distribution that is always vague

seems misguided

2. For many problems, there is no clear choice for a
vague prior distribution, since a density that is flat or

uniform in one parameterization will not

oe In another

3. Further difficulties arise when averaging over a set of
competing models that have improper prior distributions



2.9 Weakly informative prior distributions

- A prior distribution is proper but is set up so that the

iInformation it provides is intentionally weaker than actual
prior knowledge is available

- In general any problem has some natural constraints that
allow a weakly informative model

- Two principles for weakly informative priors

Start with some version of noninformative prior and then
add information

Start with a informative prior and broaden it to account
for uncertainty



