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2.1  Estimating a probability from binomial data

Binomial sampling model  - Likelihood, Posterior

𝑝 𝑦 𝜃 = 𝐵𝑖𝑛 𝑦 𝑛, 𝜃 =
𝑛

𝑦
𝜃𝑦(1 − 𝜃)𝑛−𝑦

(2.1)
𝑝 𝜃 𝑦 ∝ 𝜃𝑦(1 − 𝜃)𝑛−𝑦

(2.2)

𝑝 𝜃 𝑦 =
𝑝(𝜃, 𝑦)

𝑝(𝑦)
=
𝑝(𝜃)𝑝 𝑦 𝜃

𝑝(𝑦)
∝ 𝑝(𝜃)𝑝 𝑦 𝜃

(Bayes’ rule)



2.1  Estimating a probability from binomial data

Beta & Gamma distribution

𝐵𝑒𝑡𝑎 𝛼, 𝛽 =
Γ 𝛼 + 𝛽

Γ 𝛼 Γ 𝛽
𝜃𝛼−1(1 − 𝜃)𝛽−1, 𝜃 ∈ [0,1]

𝐺𝑎𝑚𝑚𝑎 𝛼, 𝛽 =
𝛽𝛼

Γ 𝛼
𝜃−(𝛼−1)𝑒−𝛽𝜃 , 𝜃 > 0



2.1  Estimating a probability from binomial data

Binomial sampling model  - Likelihood, Posterior

𝑝 𝑦 𝜃 = 𝐵𝑖𝑛 𝑦 𝑛, 𝜃 =
𝑛

𝑦
𝜃𝑦(1 − 𝜃)𝑛−𝑦

(2.1)
𝑝 𝜃 𝑦 ∝ 𝜃𝑦(1 − 𝜃)𝑛−𝑦

(2.2)
𝜃 ȁ𝑦 ~ 𝐵𝑒𝑡𝑎 𝑦 + 1, 𝑛 − 𝑦 + 1

(2.3)



2.1  Estimating a probability from binomial data

Example. Estimating the probability of a female birth

𝑛 : population

𝑦 : # of female

𝜃 : proportion of

female births

Assume. 𝜃 ~ 𝑈(0,1)

𝜃 ȁ𝑦 ~ 𝐵𝑒𝑡𝑎 𝑦 + 1, 𝑛 − 𝑦 + 1



2.1  Estimating a probability from binomial data

Prediction

𝑝 𝑦 𝑦 = න𝑝 𝑦, 𝜃ȁ𝑦 𝑑𝜃

= න𝑝 𝑦ȁ𝜃, 𝑦 𝑝 𝜃ȁ𝑦 𝑑𝜃

= න𝑝 𝑦ȁ𝜃 𝑝 𝜃ȁ𝑦 𝑑𝜃

(1.4)



2.1  Estimating a probability from binomial data

Prediction

𝑝 𝑦 𝑦 = න𝑝 𝑦, 𝜃ȁ𝑦 𝑑𝜃 = න𝑝 𝑦ȁ𝜃 𝑝 𝜃ȁ𝑦 𝑑𝜃

(1.4)

𝑃𝑟 𝑦 = 1ȁ𝑦 = න
0

1

𝑃𝑟 𝑦 = 1ȁ𝜃, 𝑦 𝑝 𝜃ȁ𝑦 𝑑𝜃

= න
0

1

𝜃𝑝 𝜃ȁ𝑦 𝑑𝜃 = 𝐸 𝜃ȁ𝑦 =
𝛼

𝛼 + 𝛽
=
𝑦 + 1

𝑛 + 2



2.2  Posterior as compromise
between data and prior information

Relationship between prior & posterior mean & variance

𝐸 𝜃 = 𝐸 𝐸 𝜃 𝑦

(2.7)
𝑣𝑎𝑟 𝜃 = 𝐸 𝑣𝑎𝑟 𝜃 𝑦 + 𝑣𝑎𝑟 𝐸 𝜃 𝑦

(2.8)

𝑣𝑎𝑟 𝜃 > 𝐸 𝑣𝑎𝑟 𝜃 𝑦 : potential for reducing ‘uncertainty’



2.3  Summarizing posterior inference

- Flexibility : posterior inferences can be summarized, even
after complicated transformations

- Summaries of locations : mean, median, mode

- The mode often plays an important role even rather than 
mean or median because of its convenience

- Posterior quantiles : interest in interval summary
with regard to posterior uncertainty



2.3  Summarizing posterior inference

- The highest posterior density region
: conveys more information about separate centrals



2.4  Informative prior distributions

𝑝 𝜃 𝑦 =
𝑝(𝜃, 𝑦)

𝑝(𝑦)
=
𝑝(𝜃)𝑝 𝑦 𝜃

𝑝(𝑦)
∝ 𝑝(𝜃)𝑝 𝑦 𝜃

The uniform prior distribution

𝜃 ~ 𝑈 0,1 ⇒ 𝑝 𝜃 = 1, 𝑝 𝜃 𝑦 ∝ 𝑝 𝑦 𝜃

Informative prior cases

𝜃 ~∎ ⇒ 𝑝 𝜃 = ∎, 𝑝 𝜃 𝑦 ∝ ∎ ⋅ 𝑝 𝑦 𝜃



2.4  Informative prior distributions

Conjugacy : Binomial sampling model
with hyperparameter 𝛼, 𝛽 of Beta distribution

Likelihood
𝑝 𝑦 𝜃 ∝ 𝜃𝑦(1 − 𝜃)𝑛−𝑦

Prior informative
𝑝(𝜃) ∝ 𝜃𝛼−1(1 − 𝜃)𝛽−1

Posterior
𝑝 𝜃 𝑦 ∝ 𝜃𝑦 1 − 𝜃 𝑛−𝑦𝜃𝛼−1 1 − 𝜃 𝛽−1

= 𝜃𝑦+𝛼−1 1 − 𝜃 𝑛−𝑦+𝛽−1

= 𝐵𝑒𝑡𝑎(𝜃ȁ𝛼 + 𝑦, 𝛽 + 𝑛 − 𝑦) ⊿



2.4  Informative prior distributions

Definition of conjugacy

𝑝(𝜃ȁ𝑦) ∈ 𝒫 for all 𝑝(⋅ ȁ𝜃) ∈ ℱ and 𝑝 ⋅ ∈ 𝒫

ℱ ∶ class of 𝑝(𝜃ȁ𝑦), 𝒫: class of all distribution

- Interested in natural conjugate prior families



2.4  Informative prior distributions

Exponential families

𝑝(𝑦𝑖ȁ𝜃) = 𝑓 𝑦𝑖 𝑔 𝜃 𝑒𝜙 𝜃 𝑇𝑢 𝑦𝑖

𝑝(𝑦ȁ𝜃) ∝ 𝑔 𝜃 𝑛𝑒𝜙 𝜃 𝑇𝑡 𝑦 , where 𝑡 𝑦 = 

𝑖=1

𝑛

𝑢(𝑦𝑖)

- t(y) : sufficient statistic for 𝜃

- The only classes that have natural conjugate prior



2.5  Estimating a normal mean with unknown variance

Normal sample distribution (known 𝜎2)

𝑝(𝑦ȁ𝜃) =
1

2𝜋𝜎
𝑒
−

1
2𝜎2

𝑦−𝜃 2

𝜃 ~ 𝑁(𝜇0, 𝜏0
2)with hyperparameters 𝜇0, 𝜏0

2

𝑝(𝜃) ∝ exp(−
1

2𝜏0
2
𝜃 − 𝜇0

2)



2.5  Estimating a normal mean with unknown variance

𝜃ȁ𝑦 ~ 𝑁(𝜇1, 𝜏1
2
)

𝑝(𝜃ȁ𝑦) ∝ exp(−
1

2𝜏1
2
𝜃 − 𝜇1

2)

𝜇1 =

1
𝜏0

2 𝜇0 +
1
𝜎2

𝑦

1
𝜏0

2 +
1
𝜎2

and
1

𝜏1
2
=

1

𝜏0
2
+

1

𝜎2
(precision)



2.5  Estimating a normal mean with unknown variance

Compromise between the prior mean and the observed value

𝜇1 = 𝜇0 +(𝑦 − 𝜇0)
𝜏0

2

𝜎2 + 𝜏0
2

𝜇1 = 𝑦 − (𝑦 − 𝜇0)
𝜎2

𝜎2 + 𝜏0
2



2.5  Estimating a normal mean with unknown variance

Posterior predictive distribution

𝑝 𝑦 𝑦 = න𝑝 𝑦ȁ𝜃 𝑝 𝜃ȁ𝑦 𝑑𝜃

∝ නexp(−
1

2𝜎2
𝑦 − 𝜃 2)exp(−

1

2𝜏1
2
𝜃 − 𝜇1

2)𝑑𝜃



2.5  Estimating a normal mean with unknown variance

Posterior predictive distribution

𝐸 𝑦 𝑦 = 𝐸(𝐸 𝑦 𝜃, 𝑦 ȁ𝑦 = 𝐸 𝜃ȁ𝑦 = 𝜇1

𝑣𝑎𝑟 𝑦 𝑦 = 𝐸(𝑣𝑎𝑟 𝑦 𝜃, 𝑦 ȁ𝑦) + 𝑣𝑎𝑟(𝐸 𝑦 𝜃, 𝑦 ȁ𝑦)
= 𝐸(𝜎2ȁ𝑦) + 𝑣𝑎𝑟 𝜃ȁ𝑦
= 𝜎2 + 𝜏1

2



2.5  Estimating a normal mean with unknown variance

Normal model with multiple observable

𝑝 𝜃ȁ𝑦1… , 𝑦𝑛 = 𝑝 𝜃หത𝑦 = 𝑁(𝜃ȁ𝜇𝑛,𝜏𝑛
2)

𝜇𝑛 =

1
𝜏0

2 𝜇0 +
𝑛
𝜎2

ത𝑦

1
𝜏0

2 +
𝑛
𝜎2

and
1

𝜏1
2
=

1

𝜏0
2
+

𝑛

𝜎2
precision

𝑝 𝜃ȁ𝑦 ≈ 𝑁(𝜃ȁത𝑦,𝜎2/𝑛)



2.6  Other standard single-parameter models

Normal distribution with known mean but unknown variance



2.6  Other standard single-parameter models

Normal distribution with known mean but unknown variance

Likelihood

𝑣 : sufficient static



2.6  Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate prior (Inverse-Gamma)



2.6  Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)



2.6  Other standard single-parameter models

Normal distribution with known mean but unknown variance

Conjugate posterior (Inverse-chi-square)



2.6  Other standard single-parameter models

Poisson model

Likelihood ( y ~ Poisson(θ) )



2.6  Other standard single-parameter models

Poisson model

Likelihood : exponential family form

natural parameter



2.6  Other standard single-parameter models

Poisson model

Prior predictive dist. – the negative binomial density



2.6  Other standard single-parameter models

Poisson model

Conjugate prior distribution

Conjugate posterior distribution



2.6  Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Extension of Poisson model for data points 𝑦1, … , 𝑦𝑛

𝑥𝑖 : exposure  𝜃 : rate

Likelihood



2.6  Other standard single-parameter models

Poisson model parameterized in terms of rate and exposure

Prior

Posterior



2.6  Other standard single-parameter models

Exponential model – time scale, ‘waiting times’

Rate

A sampling distribution (not used as a likelihood)

Prior and Posterior

𝐺𝑎𝑚𝑚𝑎(𝜃ȁ𝛼, 𝛽) 𝐺𝑎𝑚𝑚𝑎(𝜃ȁ𝛼 + 1, 𝛽 + 𝑦)



2.6  Other standard single-parameter models

Exponential model – time scale, ‘waiting times’

Rate

A sampling distribution (not used as a likelihood)

Prior and Posterior

𝐺𝑎𝑚𝑚𝑎(𝜃ȁ𝛼, 𝛽) 𝐺𝑎𝑚𝑚𝑎(𝜃ȁ𝛼 + 1, 𝛽 + 𝑦)



2.6  Other standard single-parameter models

Exponential model – n independent exp. observations

A sampling distribution of 𝑦 = (𝑦1, … , 𝑦𝑛)



2.7  Example: informative prior distribution for cancer rates

Figure below shows the counties in US with the highest and 
lowest kidney caner death rates

→ Noticeably many cases are in the middle of the country



2.7  Example: informative prior distribution for cancer rates

- There might be some reason of this

- Perhaps sample size matters

- Example:

Suppose a county A with population 1,000

Since kidney cancer is a rare disease, A will have a high 
probability of 0 death case

However, A still have a chance to have 1 case in 10 years, 
which will lead to put in the top 10% with ratio of 1 per 
10,000 per year



2.7  Example: informative prior distribution for cancer rates

- Cancer death rates model

𝑝(𝑦𝑗ȁ𝜃𝑗)~ Poi 10𝑛𝑗𝜃𝑗
- Notations

𝑦𝑗 : # of kidney cancer deaths in county 𝑗

𝑛𝑗 : population of the county

𝜃𝑗 : death rate per person per year

- For Bayesian inference,

Need prior distribution for unknown rate 𝜃𝑗
Use Gamma distribution which is conjugate to the Poisson

Consider an independent prior

How about hyperparameters?



2.7  Example: informative prior distribution for cancer rates

- Constructing a prior distribution

𝑝 𝑦𝑗 = ධ𝑝 ห𝑦𝑗 𝜃𝑗 𝑃 𝜃𝑗 d𝜃𝑗

Hence, 𝑦𝑗 ~ 𝑁𝑒𝑔𝑏𝑖𝑛(𝛼,
𝛽

10𝑛𝑗
) in this case

𝐸 𝑦𝑗 = 10𝑛𝑗
𝛼

𝛽
→ 𝐸(

𝑦𝑗

10𝑛𝑗
) =

𝛼

𝛽

var 𝑦𝑗 = 10𝑛𝑗
𝛼

𝛽
+ 10𝑛𝑗

2 𝛼

𝛽2
→ var

𝑦𝑗

10𝑛𝑗
=

1

10𝑛𝑗

𝛼

𝛽
+

𝛼

𝛽2



2.7  Example: informative prior distribution for cancer rates

- Posterior: Gamma distribution (conjugate to Poisson)

𝑝(𝜃𝑗ȁ𝑦𝑗) ~ 𝐺𝑎𝑚𝑚𝑎(𝛼 + 𝑦𝑗 , 𝛽 + 𝑛)

- Hyperparameter for 𝑝(𝜃𝑗ȁ𝑦𝑗)

set 𝛼 = 20, 𝛽 = 430,000

- Reasonable prior distribution for death rate in the U.S. during the period



2.7  Example: informative prior distribution for cancer rates

- Posterior distribution

𝑝(𝜃𝑗ȁ𝑦𝑗) ~ 𝐺𝑎𝑚𝑚𝑎(20 + 𝑦𝑗 , 430,000 + 10𝑛𝑗)

E(𝜃𝑗ȁ𝑦𝑗) =
20+𝑦𝑗

430,000+10𝑛𝑗

Var(𝜃𝑗ȁ𝑦𝑗) =
20+𝑦𝑗

(430,000+10𝑛𝑗)
2

- For counties with small nj, the data are dominated by the prior.

- For counties with large nj, the data dominate the prior.



2.7  Example: informative prior distribution for cancer rates

- Comparing counties of different sizes

Bayes-estimated rates are 

much less variable



2.8  Noninformative prior distributions

- Desire for prior distributions to play a minimal role in the 
posterior distribution

- Noninformative prior shows vague information about the 
parameter

- let the data speak for themselves

- Diffuse or flat prior

- Improper prior

- Jeffrey’s invariance principle

- cf) weakly informative prior



2.8  Noninformative prior distributions

- Proper and improper prior distributions

Estimating mean 𝜃 of normal model with known variance 𝜎2

𝑝 ȁ𝜃 𝑦 ~𝑁 𝜇0, 𝜏0
2

If 𝜏0
2 → ∞, the prior information(= Τ1 𝜏0

2) vanishes and 
𝑝 ȁ𝜃 𝑦 ≈ 𝑁 ȁ𝜃 ത𝑦, Τ𝜎2 𝑛

If 𝑃 𝜃 is proportional to constant 𝜃 ∈ −∞,∞ , it is improper 
for this violates the assumption that probabilities sum to 1

න𝑃 𝜃 d𝜃 = ∞, 𝑎𝑛𝑑 𝑝 ȁ𝜃 𝑦 = 𝑁 ȁ𝜃 ത𝑦, Τ𝜎2 𝑛



2.8  Noninformative prior distributions

- Improper prior can lead to proper posterior

න𝑃 ȁ𝜃 𝑦 d𝜃 𝛼න𝑃 ȁ𝑦 𝜃 𝑃 𝜃 d𝜃 < ∞

- Posterior distribution which is obtained from improper prior 
must be interpreted with great care!



2.8  Noninformative prior distributions

- Jeffrey’s invariance principle

considering one-to-one transformations for the parameter
𝜙 = ℎ 𝜃

By transformation of variables, 𝑃 𝜃 is equivalent to the 
following prior density on 𝜙

𝑃 𝜙 𝑝 𝜃
𝑑𝜃

𝑑∅
= 𝑃 𝜃 ℎ′ 𝜃 −1



2.8  Noninformative prior distributions

- Jeffrey’s invariance principle

This leads to defining the noninformative prior density as
𝑃 𝜃 𝛼 𝐽 𝜃 Τ1 2

where 𝐽 𝜃 as the Fisher information for 𝜃

𝐽 𝜃 = 𝐸 ฬ
𝑑 log 𝑝 ȁ𝑦 𝜃

𝑑𝜃

2

𝜃 =−𝐸 ቚ
ⅆ2 log𝑃 ȁ𝑦 𝜃

ⅆ𝜃2
𝜃



2.8  Noninformative prior distributions

- Jeffrey’s invariance principle

Jeffrey’s prior is invariant to parametrization: For 𝜙 = ℎ 𝜃 ,

𝐽 𝜙 = −𝐸
d2 log 𝑃 ȁ𝑦 𝜙

d𝜙2

=−𝐸
ⅆ2 log 𝑃 ȁ𝑦 𝜃=ℎ−1 𝜙

ⅆ𝜃2
ⅆ𝜃

ⅆ𝜙

2
= 𝐽 𝜃

ⅆ𝜃

ⅆ𝜙

2

Thus, 𝐽 𝜙 Τ1 2 = 𝐽 𝜃 Τ1 2
ⅆ𝜃

ⅆ𝜙



2.8  Noninformative prior distributions

- Difficulties with noninformative prior distributions

1. Searching for a prior distribution that is always vague 
seems misguided

2. For many problems, there is no clear choice for a 
vague prior distribution, since a density that is flat or 
uniform in one parameterization will not be in another

3. Further difficulties arise when averaging over a set of 
competing models that have improper prior distributions



2.9  Weakly informative prior distributions

- A prior distribution is proper but is set up so that the 
information it provides is intentionally weaker than actual 
prior knowledge is available

- In general any problem has some natural constraints that 
allow a weakly informative model

- Two principles for weakly informative priors

Start with some version of noninformative prior and then 
add information

Start with a informative prior and broaden it to account 
for uncertainty 


